Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int e^{2x} \cos^2 x \text{ dx }\]
\[ = \int e^{2x} \left( \frac{1 + \cos 2x}{2} \right)\text{ dx }\]
\[ = \frac{1}{2}\int e^{2x} \text{ dx }+ \frac{1}{2}\int e^{2x} \text{ cos }\left( 2x \right)dx \]
\[ = \frac{e^{2x}}{4} + \frac{1}{2} I_1 . . . . . \left( 1 \right)\]
\[\text{ Where}\ I_1 = \int e^{2x} \text{ cos 2x dx}\]
`\text{Considering cos ( 2x ) as first function and` `\text{ e}^{2x}` ` \text{ as second function} `
\[ I_1 = \cos \left( 2x \right)\frac{e^{2x}}{2} - \int\left( - 2 \text{ sin 2x } \times \frac{e^{2x}}{2} \right)dx\]
\[ \Rightarrow I_1 = \frac{\text{ cos } \left( 2x \right) e^{2x}}{2} + \int e^{2x} \text{ sin } \left( 2x \right) dx\]
`\text{Considering sin ( 2x ) as first function and` `\text{ e}^{2x}` ` \text{ as second function} `
\[ I_1 = \frac{\text{ cos }\left( 2x \right) e^{2x}}{2} + \text{ sin }\left( 2x \right)\frac{e^{2x}}{2} - \int 2 \cos 2x\frac{e^{2x}}{2}dx\]
\[ \Rightarrow I_1 = \frac{e^{2x} \left( \cos 2x + \sin 2x \right)}{2} - I_1 \]
\[ \Rightarrow \text{ 2 }I_1 = \frac{e^{2x} \left( \cos 2x + \sin 2x \right)}{2}\]
\[ \Rightarrow I_1 = \frac{e^{2x} \left( \cos 2x + \sin 2x \right)}{4} . . . . . \left( 2 \right)\]
\[\text{ From }\left( 1 \right) \text{ and }\ \left( 2 \right)\]
\[I = \frac{e^{2x}}{4} + \frac{e^{2x}}{8}\left( \cos 2x + \sin 2x \right) + C\]
APPEARS IN
संबंधित प्रश्न
Find:
`int(x^3-1)/(x^3+x)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
`int sqrt(1+ x^2) dx` is equal to ______.
Evaluate : `int_2^3 3^x dx`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is