Advertisements
Advertisements
प्रश्न
Integrate the function:
`sqrt(4 - x^2)`
उत्तर
Let `I = int sqrt (4 - x^2) dx`
`= int sqrt ((2)^2 - x^2) dx`
`= [x /2 sqrt ((2)^2 - x^2) + 4/2 sin^-1 (x/2)] + C` `...[int sqrt (a^2 - x^2) dx = x/2 sqrt (a^2 - x^2) + a^2/2 sin^-1 (x/a) + C]`
`= (x sqrt 4 - x^2)/2 + 4/2 sin^-1 (x/2) +C`
`(x sqrt(4 - x^2))/2 + 2 sin^-1 (x/2) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
`int dx/(x^2 + 2x + 2)` equals:
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(1+ x^2) dx` is equal to ______.
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find `int (dx)/sqrt(4x - x^2)`