Advertisements
Advertisements
प्रश्न
Integrate the function `(x + 2)/sqrt(4x - x^2)`
उत्तर
Let `I = int (x + 2)/sqrt(4x - x^2) dx`
`= int (x + 2)/sqrt(- (x^2 - 4x + 4) + 4) dx`
`= int (x + 2)/sqrt(4 - (x - 2)^2) dx`
`= (x - 2 + 4)/sqrt(4 - (x - 2)^2) dx`
`= int (x - 2)/sqrt(4 - (x - 2)^2) dx + 4 int 1/sqrt(4 - (x - 2)^2) dx`
Let `I = I_1 + 4sin^-1 ((x - 2)/2) + C_1` .....(i)
Where `I_1 = int (x - 2)/ sqrt (4 - (x - 2)^2)dx`
Put 4 - (x - 2)2 = t
-2 (x - 2) dx = dt
`I_1 = 1/2 int dt/ sqrt ((2)^2 - t)`
`1/2 int dt/ sqrt (4 - t)`
`1/2 [(4 - t)^(-1/(2+1))/-(-1/2 + 1)] + C_2`
`= -sqrt ((4 - t)) + C_2`
`= - sqrt (4 - (x - 2)^2) + C_2`
`= - sqrt (4 - x^2 - 4 + 4x) + C_2`
`= - sqrt (4x - x^2) + C_2` ....(ii)
`I = - sqrt (4x - x^2) + 4sin^-1 ((x - 2)/2) + C` ... [from (i) and (ii)]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find: `int (dx)/(x^2 - 6x + 13)`