Advertisements
Advertisements
प्रश्न
Integrate the function `x^2/(1 - x^6)`
उत्तर
Let `I = x^2/(1 - x^6) dx`
`= int x^2/(1 - (x^3)^2) dx`
Put x3 = t
3x2 dx = dt ⇒ x2 dx = `1/3` dt
`therefore I = 1/3 int dt/(1 - t^2)`
`= 1/3 . 1/2 log abs ((1 + t)/(1 - t)) + C`
`= 1/6 log abs ((1 + t)/(1 - t)) + C`
`= 1/6 log abs ((1 + x^3)/(1 - x^3)) + C` `...[∵ int dx/(a^2 - x^2) = 1/(2a) log |(a + x) /(a - x)|+C]`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ x^2/9)`
Find `int dx/(5 - 8x - x^2)`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
Find `int (dx)/sqrt(4x - x^2)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.