Advertisements
Advertisements
प्रश्न
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
उत्तर
Let
` "I" = int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
` "I" = int_(-pi/4)^0 (1+sin"x"/cos"x")/(1-sin"x"/cos"x")"dx"`
` "I" = int_(-pi/4)^0 (cos"x"+sin"x")/(cos"x"-sin"x")"dx"`
Let
cos x - sin x = t
- (sin x + cos x) dx = dt
For x `=(-pi)/4,"t" = sqrt2` and x = 0, t = 1
`"I" = -int_(sqrt2)^1 "dt"/"t"`
`"I" = int_1^sqrt2 "dt"/"t"`
` = ["lnt"]_1^sqrt2`
` = "ln"sqrt2`
APPEARS IN
संबंधित प्रश्न
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Evaluate : `int_2^3 3^x dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]