Advertisements
Advertisements
प्रश्न
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
पर्याय
\[\frac{\tan^{- 1} \left( \log_e x \right)}{x} + C\]
\[\tan^{- 1} \left( \log_e x \right) + C\]
\[\frac{\tan^{- 1} x}{x} + C\]
none of these
उत्तर
\[\tan^{- 1} \left( \log_e x \right) + C\]
\[\text{We have to integrate }\frac{1}{1 + \left( \log_e x \right)^2}\text{ with respect to }\log {}_e x \]
\[\text{Let }I = \int\frac{d \left( \log_e x \right)}{1 + \left( \log_e x \right)^2}\]
\[\text{Putting }\log_e x = t\]
\[d \left( \log_e x \right) = dt\]
\[ \therefore I = \int\frac{dt}{1 + t^2}\]
\[ = \tan^{- 1} \left( t \right) + C\]
\[ = \tan^{- 1} \left( \log_e x \right) + C ...............\left( \because t = \log_e x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(1+ x^2) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find `int (dx)/sqrt(4x - x^2)`
Find: `int (dx)/(x^2 - 6x + 13)`