Advertisements
Advertisements
प्रश्न
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
उत्तर
`Let 3x+1=λd/dx(4−3x−2x^2)+μ`
⇒3x+1=λ(−3−4x)+μ
⇒3x+1=−3λ+μ−4λx
⇒3=−4λ , −3λ+μ=1
⇒λ=−3/4, μ=−5/4
`I=int(3x+1)sqrt(4-3x-2x^2)dx`
`=∫[−3/4(−3−4x)−5/4]sqrt(4−3x−2x^2)dx`
`=∫−3/4(−3−4x)sqrt(4−3x−2x^2)dx−∫5/4 sqrt(4−3x−2x^2)dx`
`=−3/4∫(−3−4x)sqrt(4−3x−2x^2)dx−5/4∫sqrt(4−3x−2x^2)dx `
Let 4−3x−2x2=t in the first integral⇒(−3−4x)dx=dt
`∴ I=−3/4∫sqrtt dt−5/4∫sqrt(−2(x^2+3/2x−2)dx`
`=−3/4×2/3t^(3/2)+C_1−5/4∫sqrt(−2(x^2+3/2x−2+9/16−9/16)dx`
`=−1/2(4−3x−2x^2)^(3/2)+C_1−5/4∫sqrt(−2[(x+3/4)^2−(sqrt41/4)^2])dx`
`=−1/2(4−3x−2x^2)^(3/2)+C_1−(5sqrt2)/4∫sqrt((sqrt41/4)^2−(x+3/4)^2)dx`
`=−1/2(4−3x−2x^2)^(3/2)+C_1-(5sqrt2)/4[1/2(x+3/4)sqrt((41/16)−(x+3/4)^2)+1/2(41/16)sin^−1 ((x+3/4)/(sqrt41/4))+C_2]`
`=−1/2(4−3x−2x^2)^(3/2)−5/(4sqrt2)(x+3/4)sqrt((41/16)−(x+3/4)^2)-205/(64sqrt2) sin^−1 ((4x+3)/sqrt41)+C, `
where C=C_1−C_2
APPEARS IN
संबंधित प्रश्न
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
Integrate the function:
`sqrt(1+ x^2/9)`
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.