Advertisements
Advertisements
Question
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Solution
`Let 3x+1=λd/dx(4−3x−2x^2)+μ`
⇒3x+1=λ(−3−4x)+μ
⇒3x+1=−3λ+μ−4λx
⇒3=−4λ , −3λ+μ=1
⇒λ=−3/4, μ=−5/4
`I=int(3x+1)sqrt(4-3x-2x^2)dx`
`=∫[−3/4(−3−4x)−5/4]sqrt(4−3x−2x^2)dx`
`=∫−3/4(−3−4x)sqrt(4−3x−2x^2)dx−∫5/4 sqrt(4−3x−2x^2)dx`
`=−3/4∫(−3−4x)sqrt(4−3x−2x^2)dx−5/4∫sqrt(4−3x−2x^2)dx `
Let 4−3x−2x2=t in the first integral⇒(−3−4x)dx=dt
`∴ I=−3/4∫sqrtt dt−5/4∫sqrt(−2(x^2+3/2x−2)dx`
`=−3/4×2/3t^(3/2)+C_1−5/4∫sqrt(−2(x^2+3/2x−2+9/16−9/16)dx`
`=−1/2(4−3x−2x^2)^(3/2)+C_1−5/4∫sqrt(−2[(x+3/4)^2−(sqrt41/4)^2])dx`
`=−1/2(4−3x−2x^2)^(3/2)+C_1−(5sqrt2)/4∫sqrt((sqrt41/4)^2−(x+3/4)^2)dx`
`=−1/2(4−3x−2x^2)^(3/2)+C_1-(5sqrt2)/4[1/2(x+3/4)sqrt((41/16)−(x+3/4)^2)+1/2(41/16)sin^−1 ((x+3/4)/(sqrt41/4))+C_2]`
`=−1/2(4−3x−2x^2)^(3/2)−5/(4sqrt2)(x+3/4)sqrt((41/16)−(x+3/4)^2)-205/(64sqrt2) sin^−1 ((4x+3)/sqrt41)+C, `
where C=C_1−C_2
APPEARS IN
RELATED QUESTIONS
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Evaluate : `int_2^3 3^x dx`
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.