Advertisements
Advertisements
Question
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Solution
Let, I `= int (6x + 7)/sqrt((x - 5)(x - 4)) dx`
`= int (6x + 7)/sqrt(x^2 - 9x + 20) dx`
`6x + 7 = A d/dx (x^2 - 9x + 20) + B`
= A (2x - 9) + B ....(i)
Comparing coefficient of x in (i), we get
6 = 2A
`therefore A = 3`
7 = - 9A + B
= - 27 + B
`therefore B = 34`
`therefore I = int (3 (2x - 9) + 34)/sqrt(x^2 - 9x + 20) dx`
`I = 3= int ((2x - 9))/(x^2 - 9x + 20) dx + 34 int dx/sqrt(x^2 - 9x + 20)`
`= 3I_1 - 34 I_2` ....(ii)
`therefore I_1 = int ((2x - 9))/sqrt(x^2 - 9x + 20) dx`
Put x2 - 9x + 20 = t
(2x - 9) dx = dt
∴ `I_1 = int dt/sqrtt`
`therefore dt/sqrtt int t^(1/2) dt = (t^(1/2)/(1/2)) + C_1`
`= 2 sqrtt + C_1`
`2 = sqrt(x^2 - 9x + 20) + C_1` .....(iii)
`I_2 = int dx/sqrt(x^2 - 9x + 20)`
`= int dx/sqrt (x^2 - 9x + (9/2)^2 - (9/2)^2 + 20)`
`= dx/ sqrt ((x = 9/2)^2 - 81/4 + 20)`
`= int dx/ sqrt ((x - 9/2)^2 - (1/2)^2)`
`= log |(x - 9/2) + sqrt ((x - 9/2)^2 - (1/2)^2)| + C_2`
`= log |(x - 9/2) + sqrt (x^2 - 9x + 20)| + C_2` ....(iv)
From (ii), (iii) and (iv), we get
`I = 3 xx2 sqrt (x^2 - 9x + 20) + 34 log |(x - 9/2) + sqrt (x^2 - 9x + 20)| + C`
or `I = 6 sqrt (x^2 - 9x + 20) + 34 log |(x - 9/2) + sqrt (x^2 - 9x + 20)| + C`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(1+ x^2) dx` is equal to ______.
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.