Advertisements
Advertisements
Question
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Solution
Let `I = int (x + 3)/ (x^2 - 2x - 5) dx`
Put `x + 3 = A [d/dx (x^2 - 2x - 5)] + B`
= A (2x - 2) +B ....(i)
Comparing the coefficient of x in (i), we get
1 = 2A
⇒ `A = 1/2`
Comparing the constant terms in (i), we get
3 = B - 2A
⇒ 3 = B - 1
⇒ B = 4
`I = int (1/2 (2x - 2) + 4)/(x^2 - 2x - 5)`
`1/2 int (2x - 2)/ (x^2 - 2x - 5) dx + 4 int dx /(x^2 - 2x - 5)`
Let `I = 1/2 I_1 + 4I_2` ....(ii)
Where `I_1 = int (2x - 2)/ (x^2 - 2x -5) dx`
Put x2 - 2x - 5 = t
⇒ (2x - 2) dx = dt
∴ `I_1 = intdt/t = log |t| = log |x^2 - 2x - 5| + C_1` ....(iii)
and `I_2 = int dx/ (x^2 - 2x - 5)`
`= dx/ ((x - 1)^2 - 6)`
`= int dx/ ((x - 1)^2 - (sqrt6)^2) = 1/(2sqrt6) log |(x - 1 - sqrt6)/(x - 1 + sqrt6)| + C_2`
Hence from (ii), (iii) and (iv), we get
∴ `I = 1/2 log |(x^2 - 2x - 5)| + 2/ sqrt6 log |(x - 1 - sqrt6)/(x - 1 + sqrt6)| + C`
APPEARS IN
RELATED QUESTIONS
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(1-4x - x^2)`
`int sqrt(1+ x^2) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find `int (dx)/sqrt(4x - x^2)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.