Advertisements
Advertisements
Question
Solution
\[\text{ Let I }= \int e^x \text{ sin}^2 x \text{ dx }\]
\[ = \int e^x \left( \frac{1 - \cos 2x}{2} \right)dx\]
\[ = \frac{1}{2}\int e^x dx - \frac{1}{2}\int e^x \text{ cos 2x dx }\]
\[ = \frac{e^x}{2} - \frac{1}{2}\int e^x \text{ cos }\left( \text{ 2x}\right) dx . . . . . \left( 1 \right)\]
\[\text{ Let I}_1 = \int e^x \text{ cos} \left( 2x \right)dx\]
`\text{Considering cos ( 2x ) as first function and` `\text{ e}^{t}` ` \text{ as second function} `
\[ I_1 = \text{ cos } \left( 2x \right) e^x - \int - 2 \text{ sin }\left( 2x \right) e^x dx\]
\[ \Rightarrow I_1 = \text{ cos } \left( 2x \right) e^x + 2\int \text{ sin }\left( 2x \right) e^x dx\]
\[ \Rightarrow I_1 = \text{ cos } \left( 2x \right) e^x + 2\left[ \text{ sin } \left( 2x \right) e^x - \int 2 \text{ cos } \left( 2x \right) e^x dx \right]\]
\[ \Rightarrow I_1 = \text{ cos }\left( 2x \right) e^x + 2 \text{ sin }\left( 2x \right) e^x - 4 I_1 \]
\[ \Rightarrow 5 I_1 = e^x \left( \text{ cos }2x + 2 \text{ sin }2x \right)\]
\[ \Rightarrow I_1 = \frac{e^x}{5}\left( \text{ cos }2x + 2 \text{ sin }2x \right) + C . . . . . \left( 2 \right)\]
` \text{ From ( 1 ) and ( 2) `
\[I = \frac{e^x}{2} - \frac{e^x}{10}\left( \text{ cos }2x + 2 \text{ sin }2x \right) + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
`int sqrt(1+ x^2) dx` is equal to ______.
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find `int (dx)/sqrt(4x - x^2)`
Find: `int (dx)/(x^2 - 6x + 13)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.