English

Evaluate the Following Integrals: ∫ E 2 X Sin ( 3 X + 1 ) D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]
Sum

Solution

\[\text{ We have, } \]
\[I = \int e^{2x} \sin\left( 3x + 1 \right) dx\]
\[\text{Let the first function be sin ( 3x + 1 ) and the second function be} \text{ e}^{2x} . \]
\[\text{First we find the integral of the second function}, i . e . , \int e^{2x} \text{ dx }. \]
\[\int e^{2x} dx = \frac{1}{2} e^{2x} \]
\[\text{Now, using integration by parts, we get}\]
\[I = \text{ sin}\left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \left( \frac{d \left( \sin\left( 3x + 1 \right) \right)}{d x} \right)\int e^{2x} dx \right]dx\]
\[ = \frac{1}{2} \text{ sin}\left( 3x + 1 \right) e^{2x} - \frac{3}{2}\int\left[ \cos\left( 3x + 1 \right) e^{2x} \right]dx\]
\[ = \frac{1}{2} \text{ sin}\left( 3x + 1 \right) e^{2x} - \frac{3}{2}\left\{ \cos\left( 3x + 1 \right)\int e^{2x} \text{ dx }- \int\left[ \left( \frac{d \left( \cos\left( 3x + 1 \right) \right)}{d x} \right)\int e^{2x} dx \right]\text{ dx }\right\}\]
\[ = \frac{1}{2}\text{ sin }\left( 3x + 1 \right) e^{2x} - \frac{3}{2}\left\{ \frac{1}{2}\cos\left( 3x + 1 \right) e^{2x} + \frac{3}{2}\int\text{ sin}\left( 3x + 1 \right) e^{2x} dx \right\}\]
\[ = \frac{1}{2}\text{ sin }\left( 3x + 1 \right) e^{2x} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}I + c\]
\[I + \frac{9}{4}I = \frac{1}{2}\text{ sin }\left( 3x + 1 \right) e^{2x} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} + c\]
\[\frac{13}{4}I = \frac{e^{2x}}{2}\left[ \text{ sin }\left( 3x + 1 \right) - \frac{3}{2}\cos\left( 3x + 1 \right) \right] + c\]
\[I = \frac{2}{13} e^{2x} \left[ \text{ sin }\left( 3x + 1 \right) - \frac{3}{2}\cos\left( 3x + 1 \right) \right] + c\]
\[ = \frac{e^{2x}}{13}\left[ 2 \text{ sin }\left( 3x + 1 \right) - 3 \cos\left( 3x + 1 \right) \right] + c\]
\[\text{ Hence, } \int e^{2x} \text{ sin }\left( 3x + 1 \right) dx = \frac{e^{2x}}{13}\left[ 2 \text{ sin }\left( 3x + 1 \right) - 3 \cos\left( 3x + 1 \right) \right] + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.27 [Page 149]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.27 | Q 7 | Page 149

RELATED QUESTIONS

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×