Advertisements
Advertisements
Question
Solution
\[\text{ Let I }= \int e^{2x} \text{ sin x dx }\]
`\text{Considering sin x as first function and` `\text{ e}^{2x}` ` \text{ as second function} `
\[I = \sin x\frac{e^{2x}}{2} - \int \cos x\frac{e^{2x}}{2}dx\]
\[ \Rightarrow I = \text{ sin x}\frac{e^{2x}}{2} - \frac{1}{2}\int \text{ cos x e }^{2x} \text{ dx }\]
\[ \Rightarrow I = \frac{\text{ sin x e}^{2x}}{2} - \frac{1}{2}\left[ \cos x\frac{e^{2x}}{2} - \int\left( - \sin x \right)\frac{e^{2x}}{2}dx \right]\]
\[ \Rightarrow I = \frac{\text{ sin x e}^{2x}}{2} - \frac{\text{ cos x e}^{2x}}{4} - \frac{1}{2}\int\frac{e^{2x} \sin x}{2}dx\]
\[I = \frac{e^{2x} \left( 2 \sin x - \cos x \right)}{4} - \frac{I}{4}\]
\[ \Rightarrow 5I = e^{2x} \left( 2 \sin x - \cos x \right)\]
\[ \Rightarrow I = \frac{e^{2x} \left( 2 \sin x - \cos x \right)}{5} + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Evaluate : `int_2^3 3^x dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.