Advertisements
Advertisements
Question
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Solution
Let `I = int sqrt(x^2 + 4x + 6)`
`= int sqrt(x^2 + 4x + 4 + 2)` dx
`= int sqrt ((x + 2)^2 + (sqrt(2))^2)`
`= ((x + 2))/2 sqrt ((x + 2)^2 + 2) + 2/2 log abs((x + 2) + sqrt((x + 2)^2 + 2)) + C`
`= ((x + 2))/2 sqrt(x^2 + 4x + 6) + log abs ((x + 2) + sqrt(x^2 + 4x + 6)) + C` `...[∵ int sqrt (a^2 + x^2) dx = x/2 sqrt (a^2 + x^2) + a^2/2 log |x + sqrt (a^2 + x^2)| + C]`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(1+ x^2/9)`
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
Find: `int (dx)/(x^2 - 6x + 13)`