Advertisements
Advertisements
Question
Integrate the function:
`sqrt(1+ x^2/9)`
Solution
Let `I = int sqrt (1 + x^2/9) dx`
`= 1/3 int sqrt (9 + x^2) dx`
`= 1/3 int sqrt (x^2 + 3^2) dx`
`= 1/3 [x/2 sqrt (x^2 + 9) + 9/2 log |x + sqrt (x^2 + 9)|] + C`
`...[∵ int sqrt (a^2 + x^2) dx = x/2 sqrt (a^2 + x^2) + a^2/2 log |x + sqrt (a^2 + x^2)| + C]`
`= x/6 sqrt (x^2 + 9) + 3/2 log |x + sqrt (x^2 + 9)| + C`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Find `int dx/(5 - 8x - x^2)`
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find `int (dx)/sqrt(4x - x^2)`