Advertisements
Advertisements
प्रश्न
Integrate the function:
`sqrt(1+ x^2/9)`
उत्तर
Let `I = int sqrt (1 + x^2/9) dx`
`= 1/3 int sqrt (9 + x^2) dx`
`= 1/3 int sqrt (x^2 + 3^2) dx`
`= 1/3 [x/2 sqrt (x^2 + 9) + 9/2 log |x + sqrt (x^2 + 9)|] + C`
`...[∵ int sqrt (a^2 + x^2) dx = x/2 sqrt (a^2 + x^2) + a^2/2 log |x + sqrt (a^2 + x^2)| + C]`
`= x/6 sqrt (x^2 + 9) + 3/2 log |x + sqrt (x^2 + 9)| + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
`int sqrt(1+ x^2) dx` is equal to ______.
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]