Advertisements
Advertisements
प्रश्न
Integrate the function `x^2/sqrt(x^6 + a^6)`
उत्तर
Let `I = x^2/sqrt(x^6 + a^6) dx`
`= int x^2/sqrt((x^3)^2 + (a^3)^2) dx`
Put x3 = t
3x2 dx = dt ⇒ x2 dx = `1/3` dt
`therefore I = 1/3 int dt/sqrt(t^2 + (a^3)^2)`
`= 1/3 log [t + sqrt (t^2 + a^6)] + C` `...[∵ int dx/ sqrt(x^2 + a^2) = log |x + sqrt (x^2 + a^2)| + C]`
`= 1/3 log [x^3 + sqrt(x^6 + a^6)] + C`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
Find `int dx/(5 - 8x - x^2)`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
Find `int (dx)/sqrt(4x - x^2)`