Advertisements
Advertisements
प्रश्न
Integrate the function:
`sqrt(1+ 3x - x^2)`
उत्तर
Let `I = int sqrt (1 + 3x - x^2) dx`
`= int sqrt (1 - (x^2 - 3x)) dx`
`= int sqrt (1 - (x^2 - 3x + 9/4) + 9/4) dx`
`= int sqrt ((sqrt(13)/2)^2 - (x - 3/2)^2) dx`
`= [(x - 3/2)/2* sqrt (13/4 - (x - 3/2)^2) + 13/8 sin^-1 ((x - 3/2)/(sqrt 13/2))] +C` `....[int sqrt (a^2 - x^2) dx = x/2 sqrt (a^2 - x^2) + a^2/2 sin^-1 x/a + C]`
`= (2x - 3)/4 sqrt (1 + 3x - x^2) + 13/8 sin^-1 ((2x - 3)/sqrt13) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find: `int (dx)/(x^2 - 6x + 13)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.