Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int\text{ cos }\left( \text{ log x } \right) \text{ dx }\]
\[\text{ Let log x } = t\]
\[ \Rightarrow x = e^t \]
\[ \Rightarrow dx = e^t dt\]
\[I = \int e^t \cos\left( t \right)dt\]
`\text{Considering cos ( t ) as first function and` `\text{ e}^{t}` ` \text{ as second function} `
\[I = \text{ cos t e}^t - \int \left( - \sin t \right) e^t dt\]
\[ \Rightarrow I = \text{ cos t e}^t + \int \text{ sin t e }^t dt\]
\[ \Rightarrow I = \text{ cos t e}^t + I_1 . . . . . \left( 1 \right)\]
\[\text{ where I}_1 = \int e^t \text{ sin t dt }\]
\[ I_1 = \int e^t \text{ sin t dt}\]
\[\text{Cosidering sin t as first function and e}^t \text{ as second function}\]
\[ I_1 = \text{ sin t e}^t - \int \text{ cos t e }^t \text{ dt }\]
\[ \Rightarrow I_1 = \text{ sin t e}^t - I . . . . . \left( 2 \right)\]
` \text{ From ( 1 ) and ( 2) } `
\[I = \text{ cos t e}^t + \text{ sin t e}^t - I\]
\[ \Rightarrow 2I = e^t \left( \sin t + \cos t \right)\]
\[ \Rightarrow I = \frac{e^t \left( \sin t + \cos t \right)}{2} + C\]
\[ \Rightarrow I = \frac{e^\text{ log x }\left[ sin \left( \log x \right) + cos\left( \log x \right) \right]}{2} + C\]
\[ \Rightarrow I = \frac{x}{2}\left[ \text{ sin } \left( \log x \right) + \text{ cos } \left( \log x \right) \right] + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/(x^2 + 2x + 2)` equals:
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(x^2 + 4x + 6)`
`int sqrt(1+ x^2) dx` is equal to ______.
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`