Advertisements
Advertisements
प्रश्न
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
उत्तर
Let `I =int (5x +3)/ sqrt (x^2 + 4x + 10) dx`
Put 5x + 3
`= A [d/dx (x^2 + 4x + 10)] +B`
5x + 3
= A (2x + 4) + B ... (i)
Comparing the coefficient of x in (i), we get
5 = 2A
⇒ A = `5/2`
Comparing the constant terms in (i), we get
3 = 4A + B
⇒ B = -7
`I = int (5/2 (2x + 4) + (-7))/ sqrt (x^2 + 4x + 10) dx`
`= 5/2 int (2x + 4)/sqrt (x^2 + 4x + 10) dx - 7 int dx/ sqrt (x^2 + 4x + 10)`
`= 5/2 I_1 - 7I_2`
∴ `I = 5/2 I_1 - 7I_2` ....(ii)
Now, `I_1 = int (2x + 4)/ sqrt (x^2 + 4x + 10) dx`
Put x2 + 4x + 10 = t
⇒ (2x + 4) dx = dt
∴ `I_1 = int dt/sqrtt`
`= int t^(-1/2) dt = 2 sqrtt`
`= 2 sqrt (x^2 + 4x + 10) + C_1` ....(iii)
and `I_2 = int dx/ sqrt(x^2 + 4x + 10) `
`= int dx / sqrt((x + 2)^2 + (sqrt( 6))^2`
`= log |x + 2 + sqrt ((x + 2)^2 + (sqrt (6))^2)|`
`= log |x + 2 + sqrt (x^2 + 4x + 10)| + C_2` ....(iv)
Hence, from (ii), (iii) and (iv), we get
`I = 5 sqrt (x^2 + 4x + 10) - 7 log |x + 2 + sqrt (x^2 + 4x + 10)| + C`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(x^2 + 3x)`
Integrate the function:
`sqrt(1+ x^2/9)`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`