Advertisements
Advertisements
प्रश्न
Integrate the function `1/sqrt(8+3x - x^2)`
उत्तर
Let `I = int 1/sqrt(8 + 3x - x^2) dx`
`= int dx/sqrt(8 - (x^2 - 3x))`
`= int dx/sqrt(8 - (x^2 - 2 * 3/2 x + 9/4) + 9/4)`
`= int dx/sqrt(41/4 - (x - 3/2)^2)`
`= int dx/sqrt((sqrt41/2)^2 - (x - 3/2)^2)` `...[∵ int dx/sqrt (a^2 - x^2) = sin^-1 x/a + C]`
`= sin^-1 ((x - 3/2)/(sqrt41/2)) + C`
`= sin^-1 ((2x - 3)/sqrt41) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
`int sqrt(1+ x^2) dx` is equal to ______.
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Evaluate : `int_2^3 3^x dx`
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find `int (dx)/sqrt(4x - x^2)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.