Advertisements
Advertisements
प्रश्न
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
उत्तर
Let `I = int (4x + 1)/sqrt(2x^2 + x - 3) dx`
Put 2x3 + x - 3 = t
4x + 1 dx = dt
∴ `I = int dt/sqrtt`
`= int t^(-1/2) dt = 2t^(1/2) + C`
`= 2 sqrt(2x^2 + x - 3) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(1+ x^2) dx` is equal to ______.
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is