Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int \frac{1}{x^3}\text{ sin} \left( \text{ log x } \right)\text{ dx }\]
\[\text{ Putting log x }= t\]
\[ \Rightarrow x = e^t \]
\[ \Rightarrow dx = e^t dt\]
\[ \therefore I = \int \frac{1}{e^{3t}}\text{ sin t e}^t dt\]
\[ = \int e^{- 2t} \text{ sin t dt }\]
`\text{Considering sin t as first function and` `\text{ e}^{-2t}` ` \text{ as second function} `
\[I = \sin t\left[ \frac{e^{- 2t}}{- 2} \right] - \int \cos t\frac{e^{- 2t}}{- 2}dt\]
\[ \Rightarrow I = \frac{\text{ sin t e}^{- 2t}}{- 2} + \frac{1}{2}\int\cos t e^{- 2t} dt\]
\[ \Rightarrow I = \frac{\text{ sin t e}^{- 2t}}{- 2} + \frac{1}{2}\left[ \cos t\frac{e^{- 2t}}{- 2} - \int\left( - \sin t \right)\frac{e^{- 2t}}{- 2}dt \right]\]
\[ \Rightarrow I = \frac{\text{ sin t e}^{- 2t}}{- 2} - \frac{1}{4} \text{ cos t e}^{- 2t} - \int \frac{e^{- 2t} \text{ sin t dt}}{4}\]
\[ \Rightarrow I = e^{- 2t} \left[ \frac{- 2 \sin t - \cos t}{4} \right] - \frac{I}{4}\]
\[ \Rightarrow \frac{5I}{4} = e^{- 2t} \left[ \frac{- 2 \sin t - \cos t}{4} \right]\]
\[ \Rightarrow I = \frac{e^{- 2t}}{5}\left[ - 2 \sin t - \cos t \right] + C\]
\[ \Rightarrow I = \frac{- x^{- 2}}{5}\left[ 2 \text{ sin }\left( \log x \right) + \text{ cos }\left( \log x \right) \right] + C\]
\[ \Rightarrow I = \frac{- 1}{5 x^2}\left[ \text{ cos }\left( \log x \right) + 2 \text{ sin }\left( \log x \right) \right] + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find `int (dx)/sqrt(4x - x^2)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.