Advertisements
Advertisements
प्रश्न
Integrate the function `1/sqrt(9 - 25x^2)`
उत्तर
Let `I = int dx/sqrt(9 - 25 x^2)`
`= 1/5 int dx/ (sqrt (9/25 - x^2))`
`= 1/5 int dx/ sqrt ((3/5)^2 - x^2)`
`1/5 sin^-1 (x /(3/5)) + C` ....`[∵ int dx/sqrt (a^2 - x^2) = sin^-1 x/a + C]`
`= 1/5 sin^-1 ((5x)/3) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
`int dx/(x^2 + 2x + 2)` equals:
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(1+ 3x - x^2)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find: `int (dx)/(x^2 - 6x + 13)`