हिंदी

∫ 8 X + 13 √ 4 X + 7 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]

योग

उत्तर

\[\text{ Let I } = \int\left( \frac{8x + 13}{\sqrt{4x + 7}} \right)dx\]
\[\text{ Putting  4x} + 7 = t\]
\[ \Rightarrow x = \frac{t - 7}{4}\]
\[ \Rightarrow 4dx = dt\]
\[ \Rightarrow dx = \frac{dt}{4}\]
\[ \therefore I = \frac{1}{4}\int\left\{ \frac{8 \left( \frac{t - 7}{4} \right) + 13}{\sqrt{t}} \right\}dt\]
\[ = \frac{1}{4}\int\left( \frac{2t - 14 + 13}{\sqrt{t}} \right)dt\]
\[ = \frac{1}{4}\int\left( \frac{2t - 1}{\sqrt{t}} \right)dt\]
\[ = \frac{1}{4}\int\frac{2t}{\sqrt{t}}dt - \frac{1}{4}\int\frac{dt}{\sqrt{t}}\]
\[ = \frac{1}{2}\int t^\frac{1}{2} dt - \frac{1}{4}\int t^{- \frac{1}{2}} dt\]
\[ = \frac{1}{2}\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] - \frac{1}{4}\left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{2} \times \frac{2}{3} t^\frac{3}{2} - \frac{2}{4} t^\frac{1}{2} + C\]
\[ = \frac{1}{3} t^\frac{3}{2} - \frac{2}{4} t^\frac{1}{2} + C\]
\[ = \frac{1}{3} \left( 4x + 7 \right)^\frac{3}{2} - \frac{1}{2} \left( 4x + 7 \right)^\frac{1}{2} + C ....................\left( \because t = 4x + 7 \right)\]
\[ = \frac{1}{3} \left( 4x + 7 \right)^\frac{3}{2} - \sqrt{4x + 7} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 4 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×