Advertisements
Advertisements
प्रश्न
Integrate the function:
`sqrt(4 - x^2)`
उत्तर
Let `I = int sqrt (4 - x^2) dx`
`= int sqrt ((2)^2 - x^2) dx`
`= [x /2 sqrt ((2)^2 - x^2) + 4/2 sin^-1 (x/2)] + C` `...[int sqrt (a^2 - x^2) dx = x/2 sqrt (a^2 - x^2) + a^2/2 sin^-1 (x/a) + C]`
`= (x sqrt 4 - x^2)/2 + 4/2 sin^-1 (x/2) +C`
`(x sqrt(4 - x^2))/2 + 2 sin^-1 (x/2) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1+ x^2/9)`
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find: `int (dx)/(x^2 - 6x + 13)`