Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Given integral is}, \]
\[\int x^2 e^{x^3} \cos \left( x^3 \right) \text{ dx }\]
\[\text{ Let x}^3 = t\]
\[ \Rightarrow 3 x^2 dx = dt\]
\[ \Rightarrow x^2 dx = \frac{dt}{3}\]
\[\text{Integral becomes}, \]
\[\frac{1}{3}\int e^t \text{ cos t dt}\]
\[ = \frac{1}{3}I . . . . . \left( 1 \right)\]
\[Where, I = \int e^t \text{ cos t dt }\]
\[I = \int e^t \text{ cos t dt}\]
`\text{Considering cos t as first function and` `\text{ e}^{t}` ` \text{ as second function} `
\[I = \cos t e^t - \int - \text{ sin t e}^t dt\]
\[ \Rightarrow I = e^t \cos t + \int \text{ sin t e}^t dt\]
`\text{ Again considering sin t as first function and` `\text{ e}^{t}` ` \text{ as second function} `
\[I = e^t \cos t + \sin t e^t - \int \text{ cos t e}^t dt\]
\[ \Rightarrow I = e^t \cos t + \text{ sin t e}^t - I\]
\[ \Rightarrow 2I = e^t \left( \text{ sin t} + \cos t \right)\]
\[ \Rightarrow I = \frac{e^t}{2}\left( \sin t + \cos t \right)\]
\[ \therefore \int x^2\text{ e}^{x^3} \text{ cos} \left( x^3 \right) dx = \frac{1}{3}\left[ \frac{e^t}{2}\left( \sin t + \cos t \right) \right] + C \left[ \text{ From} \left( 1 \right) \right]\]
\[ = \frac{e^{x^3}}{6}\left( \sin x^3 + \cos x^3 \right) + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
`int dx/(x^2 + 2x + 2)` equals:
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(x^2 + 3x)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(1+ x^2) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find: `int (dx)/(x^2 - 6x + 13)`