Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int e^x \text{ sin}^2 x \text{ dx }\]
\[ = \int e^x \left( \frac{1 - \cos 2x}{2} \right)dx\]
\[ = \frac{1}{2}\int e^x dx - \frac{1}{2}\int e^x \text{ cos 2x dx }\]
\[ = \frac{e^x}{2} - \frac{1}{2}\int e^x \text{ cos }\left( \text{ 2x}\right) dx . . . . . \left( 1 \right)\]
\[\text{ Let I}_1 = \int e^x \text{ cos} \left( 2x \right)dx\]
`\text{Considering cos ( 2x ) as first function and` `\text{ e}^{t}` ` \text{ as second function} `
\[ I_1 = \text{ cos } \left( 2x \right) e^x - \int - 2 \text{ sin }\left( 2x \right) e^x dx\]
\[ \Rightarrow I_1 = \text{ cos } \left( 2x \right) e^x + 2\int \text{ sin }\left( 2x \right) e^x dx\]
\[ \Rightarrow I_1 = \text{ cos } \left( 2x \right) e^x + 2\left[ \text{ sin } \left( 2x \right) e^x - \int 2 \text{ cos } \left( 2x \right) e^x dx \right]\]
\[ \Rightarrow I_1 = \text{ cos }\left( 2x \right) e^x + 2 \text{ sin }\left( 2x \right) e^x - 4 I_1 \]
\[ \Rightarrow 5 I_1 = e^x \left( \text{ cos }2x + 2 \text{ sin }2x \right)\]
\[ \Rightarrow I_1 = \frac{e^x}{5}\left( \text{ cos }2x + 2 \text{ sin }2x \right) + C . . . . . \left( 2 \right)\]
` \text{ From ( 1 ) and ( 2) `
\[I = \frac{e^x}{2} - \frac{e^x}{10}\left( \text{ cos }2x + 2 \text{ sin }2x \right) + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt(8+3x - x^2)`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(x^2 + 3x)`
Integrate the function:
`sqrt(1+ x^2/9)`
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
Find `int (dx)/sqrt(4x - x^2)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.