हिंदी

Evaluate the Following Integrals: ∫ E 2 X Sin ( 3 X + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]
योग

उत्तर

\[\text{ We have, } \]
\[I = \int e^{2x} \sin\left( 3x + 1 \right) dx\]
\[\text{Let the first function be sin ( 3x + 1 ) and the second function be} \text{ e}^{2x} . \]
\[\text{First we find the integral of the second function}, i . e . , \int e^{2x} \text{ dx }. \]
\[\int e^{2x} dx = \frac{1}{2} e^{2x} \]
\[\text{Now, using integration by parts, we get}\]
\[I = \text{ sin}\left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \left( \frac{d \left( \sin\left( 3x + 1 \right) \right)}{d x} \right)\int e^{2x} dx \right]dx\]
\[ = \frac{1}{2} \text{ sin}\left( 3x + 1 \right) e^{2x} - \frac{3}{2}\int\left[ \cos\left( 3x + 1 \right) e^{2x} \right]dx\]
\[ = \frac{1}{2} \text{ sin}\left( 3x + 1 \right) e^{2x} - \frac{3}{2}\left\{ \cos\left( 3x + 1 \right)\int e^{2x} \text{ dx }- \int\left[ \left( \frac{d \left( \cos\left( 3x + 1 \right) \right)}{d x} \right)\int e^{2x} dx \right]\text{ dx }\right\}\]
\[ = \frac{1}{2}\text{ sin }\left( 3x + 1 \right) e^{2x} - \frac{3}{2}\left\{ \frac{1}{2}\cos\left( 3x + 1 \right) e^{2x} + \frac{3}{2}\int\text{ sin}\left( 3x + 1 \right) e^{2x} dx \right\}\]
\[ = \frac{1}{2}\text{ sin }\left( 3x + 1 \right) e^{2x} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}I + c\]
\[I + \frac{9}{4}I = \frac{1}{2}\text{ sin }\left( 3x + 1 \right) e^{2x} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} + c\]
\[\frac{13}{4}I = \frac{e^{2x}}{2}\left[ \text{ sin }\left( 3x + 1 \right) - \frac{3}{2}\cos\left( 3x + 1 \right) \right] + c\]
\[I = \frac{2}{13} e^{2x} \left[ \text{ sin }\left( 3x + 1 \right) - \frac{3}{2}\cos\left( 3x + 1 \right) \right] + c\]
\[ = \frac{e^{2x}}{13}\left[ 2 \text{ sin }\left( 3x + 1 \right) - 3 \cos\left( 3x + 1 \right) \right] + c\]
\[\text{ Hence, } \int e^{2x} \text{ sin }\left( 3x + 1 \right) dx = \frac{e^{2x}}{13}\left[ 2 \text{ sin }\left( 3x + 1 \right) - 3 \cos\left( 3x + 1 \right) \right] + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.27 [पृष्ठ १४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.27 | Q 7 | पृष्ठ १४९

संबंधित प्रश्न

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{x}{\sqrt{x + 4}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

`  ∫    {1} / {cos x  + "cosec x" } dx  `

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×