Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I} = \int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e}dx\]
\[\text{Putting}\ e^x + x^e = t\]
\[ \Rightarrow e^x + e x^{e - 1} = \frac{dt}{dx}\]
\[ \Rightarrow e\left( e^{x - 1} + x^{e - 1} \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left( e^{x - 1} + x^{e - 1} \right)dx = \frac{dt}{e}\]
\[ \therefore I = \frac{1}{e}\int\frac{1}{t}dt\]
\[ = \frac{1}{e} \text{ln}+ \left| t \right| + C\]
\[ = \frac{1}{e} \text{ln} \left| e^x + x^e \right| + C \left[ \because t = e^x + x^e \right]\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
` ∫ cot^3 x "cosec"^2 x dx `
Evaluate the following integrals:
Evaluate the following integral:
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`