हिंदी

∫ 2 X + 1 ( X + 2 ) ( X − 3 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]
योग

उत्तर

We have,

\[I = \int\frac{\left( 2x + 1 \right) dx}{\left( x + 2 \right) \left( x - 3 \right)^2}\]

\[\text{Let }\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} = \frac{A}{x + 2} + \frac{B}{x - 3} + \frac{C}{\left( x - 3 \right)^2}\]

\[ \Rightarrow \frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} = \frac{A \left( x - 3 \right)^2 + B \left( x + 2 \right) \left( x - 3 \right) + C \left( x + 2 \right)}{\left( x + 2 \right) \left( x - 3 \right)^2}\]

\[ \Rightarrow 2x + 1 = A \left( x^2 - 6x + 9 \right) + B \left( x^2 - x - 6 \right) + C \left( x + 2 \right)\]

\[ \Rightarrow 2x + 1 = \left( A + B \right) x^2 + \left( - 6A - B + C \right) x + \left( 9A - 6B + 2C \right)\]

Equating the coefficients of like terms

\[A + B = 0 ..................(1)\]

\[ - 6A - B + C = 2 ....................(2)\]

\[9A - 6B + 2C = 1 .......................(3)\]

Solving (1), (2) and (3), we get

\[A = - \frac{3}{25}, B = \frac{3}{25}\text{ and }C = \frac{7}{5}\]

\[ \therefore \frac{\left( 2x + 1 \right) dx}{\left( x + 2 \right) \left( x - 3 \right)^2} = - \frac{3}{25 \left( x + 2 \right)} + \frac{3}{25 \left( x - 3 \right)} + \frac{7}{5 \left( x - 3 \right)^2}\]

\[ \Rightarrow I = - \frac{3}{25}\int\frac{dx}{x + 2} + \frac{3}{25}\int\frac{dx}{x - 3} + \frac{7}{5}\int \left( x - 3 \right)^{- 2} dx\]

\[ = - \frac{3}{25} \log \left| x + 2 \right| + \frac{3}{25} \log \left| x - 3 \right| + \frac{7}{5}\left[ \frac{\left( x - 3 \right)^{- 1}}{- 1} \right] + C\]

\[ = - \frac{3}{25}\log \left| x + 2 \right| + \frac{3}{25} \log \left| x - 3 \right| - \frac{7}{5 \left( x - 3 \right)} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 28 | पृष्ठ १७७

संबंधित प्रश्न

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×