Advertisements
Advertisements
प्रश्न
Write a value of
उत्तर
\[\text{ Let I } = \int\frac{\left( \log x \right)^n}{x}dx\]
\[\text{ Let log x }= t\]
\[ \Rightarrow \frac{1}{x}dx = dt\]
\[ \therefore I = \int t^n \text{ dt }\]
\[ = \frac{t^{n + 1}}{n + 1} + C\]
\[ = \frac{\left( \log x \right)^{n + 1}}{n + 1} + C \left( \because t = \log x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`