हिंदी

Evaluate the Following Integrals: ∫ 5 X − 2 1 + 2 X + 3 X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]
योग

उत्तर

\[\text{ Let I } = \int\frac{5x - 2}{1 + 2x + 3 x^2}dx\]
\[ = \int\frac{5x - 2}{3 x^2 + 2x + 1}dx\]
\[\text{We express}\ 5x - 2 = A\left( \frac{d}{d x}\left( 3 x^2 + 2x + 1 \right) \right) + B\]
\[5x - 2 = A(6x + 2) + B\]
\[\text{Equating the coefficients of x and constants, we get}\]
\[\text{ 5 = 6A and - 2 = 2A + B }\]
\[\text{ or A } = \frac{5}{6} \text{ and B }= - \frac{11}{3} \]
\[ \therefore I = \int\frac{\frac{5}{6}\left( 6x + 2 \right) - \frac{11}{3}}{3 x^2 + 2x + 1}dx\]
\[ = \frac{5}{6}\int\frac{\left( 6x + 2 \right)}{3 x^2 + 2x + 1}dx - \frac{11}{3}\int\frac{1}{3 x^2 + 2x + 1}dx\]
\[ = \frac{5}{6} I_1 - \frac{11}{3} I_2 . . . (1)\]
\[\text{ Now, } I_1 = \int\frac{\left( 6x + 2 \right)}{3 x^2 + 2x + 1}dx\]
\[ \text{ Let 3 x}^2 + 2x + 1 = t\]
\[ \text{On differentiating both sides, we get}\]
\[ \left( 6x + 2 \right)dx = dt\]
\[ \therefore I_1 = \int\frac{1}{t}dt\]
\[ = \text{ log }\left| t \right| + c_1 \]
\[ = \text{ log}\left| 3 x^2 + 2x + 1 \right| + c_1 . . . (2)\]
\[\text{ And,} I_2 = \int\frac{1}{3 x^2 + 2x + 1}dx\]
\[ = \frac{1}{3}\int\frac{1}{x^2 + \frac{2}{3}x + \frac{1}{3}}dx\]
\[ = \frac{1}{3}\int\frac{1}{x^2 + \frac{2}{3}x + \frac{1}{9} - \frac{1}{9} + \frac{1}{3}}dx\]
\[ = \frac{1}{3}\int\frac{1}{\left( x + \frac{1}{3} \right)^2 + \left( \frac{\sqrt{2}}{3} \right)^2}dx\]
\[ \text{ Let x } + \frac{1}{3} = t\]
\[ \text{On differentiating both sides, we get}\]
\[ dx = dt\]
\[ \therefore I_2 = \frac{1}{3}\int\frac{1}{\left( t \right)^2 + \left( \frac{\sqrt{2}}{3} \right)^2}dt\]
\[ = \frac{1}{3} \times \frac{1}{\frac{\sqrt{2}}{3}} \tan^{- 1} \frac{3t}{\sqrt{2}} + c_2 \]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \frac{3\left( x + \frac{1}{3} \right)}{\sqrt{2}} + c_2 \]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \frac{3x + 1}{\sqrt{2}} + c_2 . . . (3)\]
\[\text{ From (1), (2) and (3), we get}\]
\[ \therefore I = \frac{5}{6}\left( \log\left| 3 x^2 + 2x + 1 \right| + c_1 \right) - \frac{11}{3}\left( \frac{1}{\sqrt{2}} \tan^{- 1} \frac{3x + 1}{\sqrt{2}} + c_2 \right)\]
\[ = \frac{5}{6}\left( \log\left| 3 x^2 + 2x + 1 \right| \right) - \frac{11}{3}\left( \frac{1}{\sqrt{2}} \tan^{- 1} \frac{3x + 1}{\sqrt{2}} \right) + c\]
\[\text{ Hence }, \int\frac{5x - 2}{1 + 2x + 3 x^2}dx = \frac{5}{6}\left( \log\left| 3 x^2 + 2x + 1 \right| \right) - \frac{11}{3}\left( \frac{1}{\sqrt{2}} \tan^{- 1} \frac{3x + 1}{\sqrt{2}} \right) + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.19 | Q 12 | पृष्ठ १०४

संबंधित प्रश्न

Evaluate : `int_0^3dx/(9+x^2)`


\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×