Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let }I = \int\frac{x^2}{x^4 + x^2 - 2}dx\]
We express
\[\frac{x^2}{x^4 + x^2 - 2} = \frac{x^2}{x^4 + 2 x^2 - x^2 - 2}\]
\[ = \frac{x^2}{\left( x^2 + 2 \right)\left( x^2 - 1 \right)}\]
\[ = \frac{A}{x^2 + 2} + \frac{B}{x^2 - 1}\]
\[ \Rightarrow x^2 = A\left( x^2 - 1 \right) + B\left( x^2 + 2 \right)\]
Equating the coefficients of `x^2` and constants, we get
\[1 = A + B\text{ and }0 = - A + 2B\]
\[\text{or }A = \frac{2}{3}\text{ and }B = \frac{1}{3}\]
\[ \therefore I = \int\left( \frac{\frac{2}{3}}{x^2 + 2} + \frac{\frac{1}{3}}{x^2 - 1} \right)dx\]
\[ = \frac{2}{3}\int\frac{1}{x^2 + 2}dx + \frac{1}{3}\int\frac{1}{x^2 - 1} dx\]
\[ = \frac{\sqrt{2}}{3} \tan^{- 1} \frac{x}{\sqrt{2}} + \frac{1}{6}\log\left| \frac{x - 1}{x + 1} \right| + c\]
\[\text{Hence, }\int\frac{x^2}{x^4 + x^2 - 2}dx = \frac{\sqrt{2}}{3} \tan^{- 1} \frac{x}{\sqrt{2}} + \frac{1}{6}\log\left| \frac{x - 1}{x + 1} \right| + c\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
Evaluate the following integrals:
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integrals:
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)