Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
उत्तर
Let I = `int ("d"x)/sqrt(16 - 9x^2)`
= `1/3 int ("d"x)/sqrt(16/9 - x^2)`
= `1/3 int ("d"x)/sqrt((4/3)^2 - x^2)`
= `1/3 sin^-1 x/(4/3) + "C"` ....`[because int ("d"x)/sqrt("a"^2 - x^2) = sin^-1 x/"a" + "C"]`
∴ I = `1/3 sin^-1 (3x)/4 + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`