Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{1}{\cos 3x - \cos x}dx\]
\[ = \int\frac{1}{4 \cos^3 x - 4\ cosx}dx \left[ \because \cos 3x = 4 \cos {}^3 x - 3 \cos x \right]\]
\[ = \int\frac{1}{4\cos x\left( \cos^2 x - 1 \right)}dx\]
\[ = \frac{- 1}{4}\int\frac{1}{\cos x \sin^2 x}dx\]
\[ = \frac{- 1}{4}\int\left( \frac{\sin^2 x + \cos^2 x}{\cos x \sin^2 x}dx \right)\]
\[ = \frac{- 1}{4}\left[ \int\sec\ x\ dx + \int\text{cot x cosec}\ x\ dx \right]\]
\[ = \frac{- 1}{4}\left( \ln \left| \ sec\ x + \ tan\ x \right| - cosec\ x \right) + C\]
\[ = \frac{1}{4}\left( \text{cosec x} - \ln\left| \sec x + \tan x \right| \right) + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`