Advertisements
Advertisements
Question
Solution
\[\int\frac{1}{\cos 3x - \cos x}dx\]
\[ = \int\frac{1}{4 \cos^3 x - 4\ cosx}dx \left[ \because \cos 3x = 4 \cos {}^3 x - 3 \cos x \right]\]
\[ = \int\frac{1}{4\cos x\left( \cos^2 x - 1 \right)}dx\]
\[ = \frac{- 1}{4}\int\frac{1}{\cos x \sin^2 x}dx\]
\[ = \frac{- 1}{4}\int\left( \frac{\sin^2 x + \cos^2 x}{\cos x \sin^2 x}dx \right)\]
\[ = \frac{- 1}{4}\left[ \int\sec\ x\ dx + \int\text{cot x cosec}\ x\ dx \right]\]
\[ = \frac{- 1}{4}\left( \ln \left| \ sec\ x + \ tan\ x \right| - cosec\ x \right) + C\]
\[ = \frac{1}{4}\left( \text{cosec x} - \ln\left| \sec x + \tan x \right| \right) + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^3dx/(9+x^2)`
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate:
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`