English

Evaluate the Following Integral: ∫ X 2 X 4 − X 2 − 12 D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 

Sum

Solution

\[\text{Let }I = \int\frac{x^2}{x^4 - x^2 - 12}dx\]

We express

\[\frac{x^2}{x^4 - x^2 - 12} = \frac{x^2}{x^4 - 4 x^2 + 3 x^2 - 12}\]

\[ = \frac{x^2}{\left( x^2 - 4 \right)\left( x^2 + 3 \right)}\]
\[ = \frac{A}{x^2 - 4} + \frac{B}{x^2 + 3}\]
\[ \Rightarrow x^2 = A\left( x^2 + 3 \right) + B\left( x^2 - 4 \right)\]

Equating the coefficients of `x^2` and constants, we get

\[1 = A + B\text{ and }0 = 3A - 4B\]
\[\text{or }A = \frac{4}{7}\text{ and }B = \frac{3}{7}\]
\[ \therefore I = \int\left( \frac{\frac{4}{7}}{x^2 - 4} + \frac{\frac{3}{7}}{x^2 + 3} \right)dx\]
\[ = \frac{4}{7}\int\frac{1}{x^2 - 4}dx + \frac{3}{7}\int\frac{1}{x^2 + 3} dx\]
\[ = \frac{4}{7} \times \frac{1}{4}\log\left| \frac{x - 2}{x + 2} \right| + \frac{\sqrt{3}}{7} \tan^{- 1} \frac{x}{\sqrt{3}} + c\]
\[ = \frac{1}{7}\log\left| \frac{x - 2}{x + 2} \right| + \frac{\sqrt{3}}{7} \tan^{- 1} \frac{x}{\sqrt{3}} + c\]
\[\text{Hence, }\int\frac{x^2}{x^4 - x^2 - 12}dx = \frac{1}{7}\log\left| \frac{x - 2}{x + 2} \right| + \frac{\sqrt{3}}{7} \tan^{- 1} \frac{x}{\sqrt{3}} + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 178]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 66 | Page 178

RELATED QUESTIONS

`∫   x    \sqrt{x + 2}     dx ` 

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×