English

Evaluate the Following Integral: ∫ 3 X − 2 ( X + 1 ) 2 ( X + 3 ) D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]
Sum

Solution

\[\text{Let }I = \int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

We express

\[\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)} = \frac{A}{x + 1} + \frac{B}{\left( x + 1 \right)^2} + \frac{C}{x + 3}\]

\[ \Rightarrow 3x - 2 = A\left( x + 1 \right)\left( x + 3 \right) + B\left( x + 3 \right) + C \left( x + 1 \right)^2 \]

Equating the coefficients of `x^2 , x` and constants, we get

\[0 = A + C\text{ and }3 = 4A + B + 2C\text{ and }- 2 = 3A + 3B + C\]

\[\text{or }A = \frac{11}{4}\text{ and }B = - \frac{5}{2}\text{ and }C = - \frac{11}{4}\]

\[ \therefore I = \int\left( \frac{\frac{11}{4}}{x + 1} + \frac{- \frac{5}{2}}{\left( x + 1 \right)^2} + \frac{- \frac{11}{4}}{x + 3} \right)dx\]

\[ = \frac{11}{4}\int\frac{1}{x + 1}dx - \frac{5}{2}\int\frac{1}{\left( x + 1 \right)^2} dx - \frac{11}{4}\int\frac{1}{x + 3} dx\]

\[ = \frac{11}{4}\log\left| x + 1 \right| + \frac{5}{2\left( x + 1 \right)} - \frac{11}{4}\log\left| x + 3 \right| + c\]

\[\text{Hence, }\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx = \frac{11}{4}\log\left| x + 1 \right| + \frac{5}{2\left( x + 1 \right)} - \frac{11}{4}\log\left| x + 3 \right| + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 27 | Page 177

RELATED QUESTIONS

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


\[\int e^{2x} \text{ sin x cos x dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×