Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[\text{Let }I = \int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]
We express
\[\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)} = \frac{A}{x + 1} + \frac{B}{\left( x + 1 \right)^2} + \frac{C}{x + 3}\]
\[ \Rightarrow 3x - 2 = A\left( x + 1 \right)\left( x + 3 \right) + B\left( x + 3 \right) + C \left( x + 1 \right)^2 \]
Equating the coefficients of `x^2 , x` and constants, we get
\[0 = A + C\text{ and }3 = 4A + B + 2C\text{ and }- 2 = 3A + 3B + C\]
\[\text{or }A = \frac{11}{4}\text{ and }B = - \frac{5}{2}\text{ and }C = - \frac{11}{4}\]
\[ \therefore I = \int\left( \frac{\frac{11}{4}}{x + 1} + \frac{- \frac{5}{2}}{\left( x + 1 \right)^2} + \frac{- \frac{11}{4}}{x + 3} \right)dx\]
\[ = \frac{11}{4}\int\frac{1}{x + 1}dx - \frac{5}{2}\int\frac{1}{\left( x + 1 \right)^2} dx - \frac{11}{4}\int\frac{1}{x + 3} dx\]
\[ = \frac{11}{4}\log\left| x + 1 \right| + \frac{5}{2\left( x + 1 \right)} - \frac{11}{4}\log\left| x + 3 \right| + c\]
\[\text{Hence, }\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx = \frac{11}{4}\log\left| x + 1 \right| + \frac{5}{2\left( x + 1 \right)} - \frac{11}{4}\log\left| x + 3 \right| + c\]
APPEARS IN
RELATED QUESTIONS
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)