English

Evaluate the Following Integrals: ∫ X Cos − 1 X √ 1 − X 2 D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 

Sum

Solution

\[\text{ Let I } = \int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\]

\[\text{ Let the first function be} \cos^{- 1} \text{ x and second function be} \frac{x}{\sqrt{1 - x^2}} . \]

\[\text{ First we find the integral of the second function}, i . e . , \int\frac{x}{\sqrt{1 - x^2}}dx . \]

\[\text{ Put t } = 1 - x^2 . Then dt = - 2xdx\]

\[\]

\[\text{ Therefore,} \]

\[\int\frac{x}{\sqrt{1 - x^2}}dx = - \frac{1}{2}\int\frac{1}{\sqrt{t}}dt\]

\[ = - \sqrt{t}\]

\[ = - \sqrt{1 - x^2}\]

\[\]

\[\text{ Hence, using integration by parts, we get }\]

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx = \left( \cos^{- 1} x \right)\int\frac{x}{\sqrt{1 - x^2}}dx - \int\left[ \left( \frac{d \left( \cos^{- 1} x \right)}{d x} \right)\int\left( \frac{x}{\sqrt{1 - x^2}}dx \right) \right]dx\]

\[ = \left( \cos^{- 1} x \right)\left( - \sqrt{1 - x^2} \right) - \int\left( \frac{- 1}{\sqrt{1 - x^2}} \right)\left( - \sqrt{1 - x^2} \right)dx\]

\[ = - \sqrt{1 - x^2} \cos^{- 1} x - x + c\]

\[\]

\[\]

\[\text{ Hence}, \int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx = - \sqrt{1 - x^2} \cos^{- 1} x - x + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 133]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 27 | Page 133

RELATED QUESTIONS

Evaluate : `int_0^3dx/(9+x^2)`


\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{x}{\sqrt{x + 4}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1}{e^x + 1} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×