Advertisements
Advertisements
Question
Evaluate the following integrals:
Solution
\[\text{ Let I } = \int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]
\[\]
\[\text{ Let the first function be} \cos^{- 1} \text{ x and second function be} \frac{x}{\sqrt{1 - x^2}} . \]
\[\text{ First we find the integral of the second function}, i . e . , \int\frac{x}{\sqrt{1 - x^2}}dx . \]
\[\text{ Put t } = 1 - x^2 . Then dt = - 2xdx\]
\[\]
\[\text{ Therefore,} \]
\[\int\frac{x}{\sqrt{1 - x^2}}dx = - \frac{1}{2}\int\frac{1}{\sqrt{t}}dt\]
\[ = - \sqrt{t}\]
\[ = - \sqrt{1 - x^2}\]
\[\]
\[\text{ Hence, using integration by parts, we get }\]
\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx = \left( \cos^{- 1} x \right)\int\frac{x}{\sqrt{1 - x^2}}dx - \int\left[ \left( \frac{d \left( \cos^{- 1} x \right)}{d x} \right)\int\left( \frac{x}{\sqrt{1 - x^2}}dx \right) \right]dx\]
\[ = \left( \cos^{- 1} x \right)\left( - \sqrt{1 - x^2} \right) - \int\left( \frac{- 1}{\sqrt{1 - x^2}} \right)\left( - \sqrt{1 - x^2} \right)dx\]
\[ = - \sqrt{1 - x^2} \cos^{- 1} x - x + c\]
\[\]
\[\]
\[\text{ Hence}, \int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx = - \sqrt{1 - x^2} \cos^{- 1} x - x + c\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^3dx/(9+x^2)`
Evaluate the following integrals:
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`