Advertisements
Advertisements
Question
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Solution
\[\int \cos^{-1} \left(\sin x \right)\text{ dx }\]
\[= \int \cos^{-1} \left( \cos\left( \frac{\pi}{2} - x \right) \right) \text{ dx }\]
\[ = \int \left(\frac{\pi}{2} - x \right) dx\]
\[ = \frac{\pi}{2}x - \frac{1}{2} x^2 + c\]
\[\text{Hence,}\int \cos^{-1} \left(\sin x \right)\text{ dx } = \frac{\pi}{2}x - \frac{1}{2} x^2 + c\]
RELATED QUESTIONS
Evaluate the following integrals:
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate:
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`