Advertisements
Advertisements
Question
` ∫ cot^3 x "cosec"^2 x dx `
Solution
` ∫ cot^3 x "cosec"^2 x dx `
\[Let, \cot x = t\]
\[ \Rightarrow - {cosec}^2 x = \frac{dt}{dx}\]
\[ \Rightarrow {cosec}^2\text{ x dx} = - dt\]
\[Now, \int \cot^3 \text{x }{cosec}^2\text{ x dx}\]
\[ = \int t^3 \left( - dt \right)\]
\[ = \frac{- t^4}{4} + C\]
\[ = \frac{- \cot^4 x}{4} + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^3dx/(9+x^2)`
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)