Advertisements
Advertisements
Question
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Solution
\[\text{ Let I }= \int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\text{ Let }\sqrt{x} = t\]
\[ \Rightarrow \frac{dx}{2\sqrt{x}} = dt\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2\text{ dt}\]
\[\text{ Putting}\ \sqrt{x} = t \text{ and} \frac{dx}{\sqrt{x}} = \text{ 2 dt }\]
\[ \therefore I = 2\int \sec^2 + dt\]
\[ = 2 \tan t + C\]
\[ = 2 \tan \left( \sqrt{x} \right) + C \left( \because t = \sqrt{x} \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integrals:
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate:
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)