Advertisements
Advertisements
Question
Evaluate:
Solution
\[\text{ Let I }= \int\left( \frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \right) dx\]
\[\text{ Let x}^3 + 6 x^2 + 5 = t\]
\[ \Rightarrow \left( 3 x^2 + 12x \right) dx = dt\]
\[ \Rightarrow \left( x^2 + 4x \right) dx = \frac{dt}{3}\]
\[\text{ Putting x}^3 + 6 x^2 + 5 = t \text{ and }\left( x^2 + 4x \right) dx = \frac{dt}{3}\]
\[ \therefore I = \frac{1}{3}\int\frac{dt}{t}\]
\[ = \frac{1}{3} \text{ ln } \left| t \right| + C\]
\[ = \frac{1}{3}\text{ ln }\left| x^3 + 6 x^2 + 5 \right| + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^3dx/(9+x^2)`
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)