Advertisements
Advertisements
Question
Solution
\[\text{Let I} = \int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}}dx\]
\[\text{Putting }{10}^x + x^{10} = t\]
\[ \Rightarrow {10}^x \log_e 10 + 10 x^9 = \frac{dt}{dx}\]
\[ \Rightarrow \left( {10}^x \log_e 10 + 10 x^9 \right)dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{ln} \left| t \right| + C\]
\[ = \text{ln} \left| {10}^x + x^{10} \right| + C \left[ \because t = {10}^x + x^{10} \right]\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^3dx/(9+x^2)`
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)