English

Evaluate the Following Integral: ∫ 2 X 2 + 1 X 2 ( X 2 + 4 ) D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]
Sum

Solution

\[\text{Let }I = \int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]
We express
\[\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)} = \frac{A}{x^2} + \frac{B}{x^2 + 4}\]
\[ \Rightarrow 2 x^2 + 1 = A\left( x^2 + 4 \right) + B\left( x^2 \right)\]
Equating the coefficients of `x^2` and constants, we get
\[2 = A + B\text{ and }1 = 4A\]
\[\text{or }A = \frac{1}{4}\text{ and }B = \frac{7}{4}\]
\[ \therefore I = \int\left( \frac{\frac{1}{4}}{x^2} + \frac{\frac{7}{4}}{x^2 + 4} \right)dx\]
\[ = \frac{1}{4}\int\frac{1}{x^2}dx + \frac{7}{4}\int\frac{1}{x^2 + 4} dx\]
\[ = - \frac{1}{4x} + \frac{7}{8} \tan^{- 1} \frac{x}{2} + c\]
\[\text{Hence, }\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx = - \frac{1}{4x} + \frac{7}{8} \tan^{- 1} \frac{x}{2} + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 50 | Page 177

RELATED QUESTIONS

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{1}{x \log x} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


`  ∫    {1} / {cos x  + "cosec x" } dx  `

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×