Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[\text{Let }I = \int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]
We express
\[\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)} = \frac{A}{x^2} + \frac{B}{x^2 + 4}\]
\[ \Rightarrow 2 x^2 + 1 = A\left( x^2 + 4 \right) + B\left( x^2 \right)\]
Equating the coefficients of `x^2` and constants, we get
\[2 = A + B\text{ and }1 = 4A\]
\[\text{or }A = \frac{1}{4}\text{ and }B = \frac{7}{4}\]
\[ \therefore I = \int\left( \frac{\frac{1}{4}}{x^2} + \frac{\frac{7}{4}}{x^2 + 4} \right)dx\]
\[ = \frac{1}{4}\int\frac{1}{x^2}dx + \frac{7}{4}\int\frac{1}{x^2 + 4} dx\]
\[ = - \frac{1}{4x} + \frac{7}{8} \tan^{- 1} \frac{x}{2} + c\]
\[\text{Hence, }\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx = - \frac{1}{4x} + \frac{7}{8} \tan^{- 1} \frac{x}{2} + c\]
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)