English

Evaluate the Following Integrals: ∫ Log X ( X + 1 ) 2 D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 

Sum

Solution

\[\text{ Let I }= \int\frac{\log x}{\left( x + 1 \right)^2}dx\]
`  "Let the first function be ( log x ) and second function be   "1/(x+1)^2"   "   `
\[\text{First we find the integral of the second function, i . e} . , \int\frac{1}{\left( x + 1 \right)^2}dx . \]
\[\text{ Put t } = \left( x + 1 \right) . Then dt = dx\]
\[\text{ Therefore,} \]
\[\int\frac{1}{\left( x + 1 \right)^2}dx = \int t^{- 2} dt\]
\[ = - \frac{1}{t}\]
\[ = - \frac{1}{1 + x}\]
\[\text{Hence, using integration by parts, we get}\]
\[\int\frac{\log x}{\left( x + 1 \right)^2}dx = \left( \log x \right)\int\frac{1}{\left( x + 1 \right)^2}dx - \int\left[ \left( \frac{d \left( \log x  \right)}{d x} \right)\int\frac{1}{\left( x + 1 \right)^2}dx \right]dx\]
\[ = \left( \log x \right)\left( - \frac{1}{1 + x} \right) - \int\left( \frac{1}{x} \right)\left( - \frac{1}{1 + x} \right)dx\]
\[ = - \frac{\log x}{1 + x} + \int\left( \frac{1}{x^2 + x} \right)dx\]
\[ = - \frac{\log x}{1 + x} + \int\frac{1}{x^2 + x + \frac{1}{4} - \frac{1}{4}}dx\]
\[ = - \frac{\log x}{1 + x} + \int\frac{1}{\left( x + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}dx\]
\[ = - \frac{\log x}{1 + x} + \frac{1}{2 \times \frac{1}{2}}\text{ log }\left| \frac{x + \frac{1}{2} - \frac{1}{2}}{x + \frac{1}{2} + \frac{1}{2}} \right| + c\]
\[ = - \frac{\log x}{1 + x} + \text{ log }\left| \frac{x}{x + 1} \right| + c\]
\[\text{ Hence,} \int\frac{\log x}{\left( x + 1 \right)^2}dx = - \frac{\log x}{1 + x} + \text{ log}\left| \frac{x}{x + 1} \right| + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 133]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 28 | Page 133

RELATED QUESTIONS

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×