Advertisements
Advertisements
Question
Evaluate the following integrals:
Solution
`"sec x"/("sec"(2"x")) = ("cos"(2"x"))/"cos x"`
`= (2 "cos"^2"x" - 1)/"cos x"`
`= ("2 cos"^"x")/"cos x" - 1/"cos x"`
= 2 cos x - sec x
`int ("sec"("x"))/("sec"(2"x")) "dx" = int[2 "cos x" - "sec x"] "dx"`
`= 2 int "cos x" "dx" - int "sec"("x") "dx"`
= 2 sin(x) - ln |sec (x) + tan (x)| + C
APPEARS IN
RELATED QUESTIONS
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)