Advertisements
Advertisements
Question
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Solution
\[\int\frac{x + \cos6x}{3 x^2 + \sin6x}dx\]
\[ \text{ Let }\left( 3 x^2 + \sin6x \right) = t\]
\[ \text{On differentiating both sides, we get}\]
\[ \left( 6x + 6\cos6x \right) dx = dt\]
\[ \therefore \int\frac{x + \cos6x}{3 x^2 + \sin6x}dx = \frac{1}{6}\int\frac{1}{t}dt\]
\[ = \frac{1}{6}\text{ log}\left| t \right| + c\]
\[ = \frac{1}{6}\text{ log}\left| 3 x^2 + \sin6x \right| + c\]
\[\text{ Hence,} \int\frac{x + \cos6x}{3 x^2 + \sin6x}dx = \frac{1}{6}\text{ log}\left| 3 x^2 + \sin6x \right| + c\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^3dx/(9+x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`