English

Evaluate the Following Integral: ∫ X 2 ( X 2 + 4 ) ( X 2 + 9 ) D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]
Sum

Solution

\[\text{Let }I = \int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

We express

\[\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)} = \frac{Ax + B}{x^2 + 4} + \frac{Cx + D}{x^2 + 9}\]

\[ \Rightarrow x^2 = \left( Ax + B \right)\left( x^2 + 9 \right) + \left( Cx + D \right)\left( x^2 + 4 \right)\]

Equating the coefficients of `x^3 , x^2 , x` and constants, we get

\[0 = A + C\text{ and }1 = B + D\text{ and }0 = 9A + 4C\text{ and }0 = 9B + 4D\]

\[\text{or }A = 0\text{ and }B = - \frac{4}{5}\text{ and }C = 0\text{ and }D = \frac{9}{5}\]

\[ \therefore I = \int\left( \frac{- \frac{4}{5}}{x^2 + 4} + \frac{\frac{9}{5}}{x^2 + 9} \right)dx\]

\[ = - \frac{4}{5}\int\frac{1}{x^2 + 4}dx + \frac{9}{5}\int\frac{1}{x^2 + 9} dx\]

\[ = - \frac{4}{5} \times \frac{1}{2} \tan^{- 1} \frac{x}{2} + \frac{9}{5} \times \frac{1}{3} \tan^{- 1} \frac{x}{3} + c\]

\[ = - \frac{2}{5} \tan^{- 1} \frac{x}{2} + \frac{3}{5} \tan^{- 1} \frac{x}{3} + c\]

\[\text{Hence, }\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx = - \frac{2}{5} \tan^{- 1} \frac{x}{2} + \frac{3}{5} \tan^{- 1} \frac{x}{3} + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 18 | Page 176

RELATED QUESTIONS

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{x \log x} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


\[\int e^{2x} \text{ sin x cos x dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×