Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[\text{Let }I = \int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]
We express
\[\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)} = \frac{Ax + B}{x^2 + 4} + \frac{Cx + D}{x^2 + 9}\]
\[ \Rightarrow x^2 = \left( Ax + B \right)\left( x^2 + 9 \right) + \left( Cx + D \right)\left( x^2 + 4 \right)\]
Equating the coefficients of `x^3 , x^2 , x` and constants, we get
\[0 = A + C\text{ and }1 = B + D\text{ and }0 = 9A + 4C\text{ and }0 = 9B + 4D\]
\[\text{or }A = 0\text{ and }B = - \frac{4}{5}\text{ and }C = 0\text{ and }D = \frac{9}{5}\]
\[ \therefore I = \int\left( \frac{- \frac{4}{5}}{x^2 + 4} + \frac{\frac{9}{5}}{x^2 + 9} \right)dx\]
\[ = - \frac{4}{5}\int\frac{1}{x^2 + 4}dx + \frac{9}{5}\int\frac{1}{x^2 + 9} dx\]
\[ = - \frac{4}{5} \times \frac{1}{2} \tan^{- 1} \frac{x}{2} + \frac{9}{5} \times \frac{1}{3} \tan^{- 1} \frac{x}{3} + c\]
\[ = - \frac{2}{5} \tan^{- 1} \frac{x}{2} + \frac{3}{5} \tan^{- 1} \frac{x}{3} + c\]
\[\text{Hence, }\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx = - \frac{2}{5} \tan^{- 1} \frac{x}{2} + \frac{3}{5} \tan^{- 1} \frac{x}{3} + c\]
APPEARS IN
RELATED QUESTIONS
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral :-
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate:
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`